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This supplemental appendix contains the proof of Theorem 1 (in Section A.1), derivations

underlying the primitive conditions in Section 4 (in Section A.2), and additional simulations

results (in Section B).

A Technical details

A.1 Proof of Theorem 1

We need to show that∑n
i=1 v̂i,nv̂

′
i,n (yi,núi,n)

n
=

∑n
i=1 v̂i,nv̂

′
i,n σ

2
i,n

n
+ op(1).

As Cattaneo, Jansson and Newey (2018), to ease notation, we set r = 1 without loss of

generality.

Add and subtract εi,n to get∑n
i=1 v̂

2
i,n (yi,núi,n − σ2

i,n)

n
=

∑n
i=1 v̂

2
i,n (ε2i,n − σ2

i,n)

n
+

∑n
i=1 v̂

2
i,n (yi,núi,n − ε2i,n)

n
. (A.1)

Consider the first term on the right-hand side. Because σ2
i,n = E(ε2i,n|Xn,Wn) by definition,

E
(∑n

i=1 v̂
2
i,n (ε2i,n − σ2

i,n)

n

∣∣∣∣Xn,Wn

)
= 0.
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Next, letting ci,j := E(ε2i,n ε
2
j,n|Xn,Wn)− σ2

i,nσ
2
j,n and noting that

‖ci,j‖ ≤ max
i

E(ε4i,n|Xn,Wn) + max
i
σ4
i,n =: cn,

Assumptions 1–3 imply that

E

((∑n
i=1 v̂

2
i,n (ε2i,n − σ2

i,n)

n

)2
∣∣∣∣∣Xn,Wn

)
=

∑Gn
g=1

∑
i∈Ng

∑
j∈Ng v̂

2
i,nv̂

2
j,n ci,j

n2

≤ cn

(
max
g
|Ng|

) (
max
i

‖v̂i,n‖√
n

)2 ∑n
i=1 v̂

2
i,n

n

= op(1)

because cn = Op(1), maxg|Ng| = O(1), maxi‖v̂i,n‖/
√
n = op(1), and∑n

i=1 v̂
2
i,n

n
≤
∑n

i=1 v
2
i,n

n
≤ 2

∑n
i=1Q

2
i,n

n
+ 2

∑n
i=1 V

2
i,n

n
= Op(χn) +Op(1) = Op(1); (A.2)

here, the first inequality follows from the fact that v̂i,n is a least-squares residual—and

thus has minimal variance—and the second is an application of the well-known inequality

1
2
(a1 + a2) ≤

√
1
2
(a21 + a22). Consequently,∑n

i=1 v̂
2
i,n (ε2i,n − σ2

i,n)

n
= op(1),

and (A.1) reduces to∑n
i=1 v̂

2
i,n (yi,núi,n − σ2

i,n)

n
=

∑n
i=1 v̂

2
i,n (yi,núi,n − ε2i,n)

n
+ op(1). (A.3)

We turn to the sample average on the right-hand side of this expression next.

To do so it is useful to work with the decomposition

yi,núi,n − ε2i,n =
∑
j 6=i

εi,n(An)i,j εj,n + ((An)i,i − 1) ε2i,n

+
n∑
j=1

µi,n(An)i,j εj,n +
n∑
j=1

εi,n(An)i,j ej,n

+
n∑
j=1

µi,n(An)i,j ej,n,

(A.4)
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where

(An)i,j :=
(Hn)i,j
(Mn)i,i

, (Hn)i,j := (Mn)i,j −
(∑n

k=1 v̂
2
k,n

n

)−1
v̂i,n v̂j,n
n

.

Using standard formulae for partitioned regression, Hn can be seen to be the annihilator

matrix of a regression on both xi,n and wi,n, whereas Mn follows from a projection on

wi,n alone. Observe that (An)i,j 6= (An)j,i. Equation (A.4) follows from recalling that

yi,n = µi,n + εi,n and that

úi,n =
ûi,n

(Mn)i,i
=

n∑
j=1

(Hn)i,j
(Mn)i,i

uj,n =
n∑
j=1

(An)i,j εj,n +
n∑
j=1

(An)i,j ej,n,

which itself is a consequence of ui,n = εi,n + ei,n and the fact that ûi,n =
∑n

j=1(Hn)i,j uj,n.

Using (A.4) we have∑n
i=1 v̂

2
i,n (yi,núi,n − ε2i,n)

n
=

∑n
i=1

∑
j 6=i v̂

2
i,n εi,n(An)i,j εj,n

n
+

∑n
i=1 v̂

2
i,n ((An)i,i − 1) ε2i,n

n

+

∑n
i=1

∑n
j=1 v̂

2
i,n µi,n(An)i,j εj,n

n
(A.5)

+

∑n
i=1

∑n
j=1 v̂

2
i,n εi,n(An)i,j ej,n

n

+

∑n
i=1

∑n
j=1 v̂

2
i,n µi,n(An)i,j ej,n

n
.

We will handle each of these five terms in turn.

For the first right-hand side term in (A.5),

E

(∑n
i=1

∑
j 6=i v̂

2
i,nεi,n (An)i,j εj,n

n

∣∣∣∣∣Xn,Wn

)
= 0

because the εi,n are (conditionally) uncorrelated by Assumption 1. Next, to see that also

E

(∑n
i=1

∑
j 6=i v̂

2
i,nεi,n (An)i,j εj,n

n

)2
∣∣∣∣∣∣Xn,Wn

 = op(1), (A.6)

first expand the square to get∑n
i1=1

∑n
i2=1

∑
j1 6=i1

∑
j2 6=i2 v̂

2
i1,n

(An)i1,j1 E(εi1,nεj1,n, εi2,nεj2,n|Xn,Wn) (An)i2,j2 v̂
2
i2,n

n2
.
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Conditional independence of the εi,n across groups g, g′ in the partition of the observations

and zero correlation within each group g implies that the summand will be zero unless

either (i) i1 = i2 and j1 = j2, with i1 ∈ Ng and j1 ∈ Ng′ ; or (ii) i1 = j2 and i2 = j1, with

i1 ∈ Ng and i2 ∈ Ng′ ; or (iii) (i1, i2, j1, j2) ∈ Ng, where g 6= g′. The contribution of Case (i)

terms equals∑Gn
g=1

∑
g′ 6=g

∑
i∈Ng

∑
j∈Ng′

v̂4i,n σ
2
i,n(An)2i,j σ

2
j,n

n2
≤

(maxi σ
2
i,n)2

∑n
i=1 v̂

4
i,n

∑
j 6=i(An)2i,j

n2

≤
(maxi σ

2
i,n)2

∑n
i=1 v̂

4
i,n (Mn)−2i,i

n2

≤
(maxi σ

2
i,n)2 (mini (Mn)i,i)

−2∑n
i=1 v̂

4
i,n

n2

≤
(maxi σ

2
i,n)2

(mini (Mn)i,i)2

(
max
i

‖v̂i,n‖√
n

)2 ∑n
i=1 v̂

2
i,n

n

= op(1),

where we use that
∑

j 6=i(An)2i,j ≤
∑n

j=1(An)2i,j = (Hn)i,i (Mn)−2i,i —which follows from

the fact that Hn is a projection matrix, and so
∑n

j=1(Hn)2i,j = (Hn)i,i ∈ [0, 1] by

idempotency—and envoke Assumptions 2 and 4 for (maxi σ
2
i,n)(mini (Mn)i,i)

−1 = Op(1).

Similarly, the contribution of Case (ii) terms equals∑Gn
g=1

∑
g′ 6=g

∑
i∈Ng

∑
j∈Ng′

v̂2i,n σ
2
i,n (An)i,j (An)j,i v̂

2
j,nσ

2
j,n

n2

and is bounded by

(max
i
σ2
i,n)2

∑n
i=1

∑
j 6=i v̂

2
i v̂

2
j (An)i,j (An)j,i

n2
≤

(maxi σ
2
i,n)2

(
maxi

‖v̂i,n‖√
n

)2
(mini (Mn)i,i)2

∑n
i=1 v̂

2
i,n

n
= op(1),

where, now, we use that (An)i,j(An)j,i ≥ 0 to validate the first upper bound, and that∑
j 6=i(An)i,j(An)j,i ≤

∑n
j=1(An)i,j(An)j,i ≤ (mini (Mn)i,i)

−2 for the second upper bound.

Finally, the contribution of Case (iii) terms equals

Gn∑
g=1

∑
i1,i2∈Ng

∑
j1,j2∈Ng
j1 6=i1
j2 6=i2

v̂2i1,n (An)i1,j1 E(εi1,nεj1,n, εi2,nεj2,n|Xn,Wn) (An)i2,j2 v̂
2
i2,n

n2
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and, using the Cauchy-Schwarz inequality, is bounded by

(maxi E(ε4i,n|Xn,Wn)) (maxg|Ng|)3

(mini(Mn)i,i)2

(
max
i

‖v̂i,n‖√
n

)2 ∑n
i=1 v̂

2
i,n

n
= op(1),

which follows by the same arguments. Equation (A.6) has been shown.

The second right-hand side term in (A.5) has mean

E
(∥∥∥∥
∑n

i=1 v̂
2
i,n ((An)i,i − 1) ε2i,n

n

∥∥∥∥∣∣∣∣Xn,Wn

)
=

(∑n
i=1 v̂

2
i,n

n

)−1 ∑n
i=1 v̂

4
i,nσ

2
i,n (Mn)−1i,i
n2

,

where we use that

((An)i,i − 1) = −
(∑n

i=1 v̂
2
i,n

n

)−1(
v̂2i,n
n

1

(Mn)i,i

)
. (A.7)

This vanishes because
(
n−1

∑n
i=1 v̂

2
i,n

)−1
= Op(1) (Cattaneo, Jansson and Newey 2018,

Lemma SA-1) and∑n
i=1 v̂

4
i,nσ

2
i,n (Mn)−1i,i
n2

≤ (min
i

(Mn)i,i)
−1 (max

i
σ2
i,n)

(
max
i

‖v̂i,n‖√
n

)2 ∑n
i=1 v̂

2
i,n

n
= op(1).

To see that

E

((∑n
i=1 v̂

2
i,n ((An)i,i − 1) ε2i,n

n

)2
∣∣∣∣∣Xn,Wn

)
= op(1),

first expand the square and once again use (A.7) to see that the second moment can be

written as(∑n
i=1 v̂

2
i,n

n

)−2(∑n
i=1

∑n
j=1 v̂

4
i,nv̂

4
j,n(Mn)−1i,i (Mn)−1j,j E(ε2i,nε

2
j,n|Xn,Wn)

n4

)
.

Applying the Cauchy-Schwarz inequality to E(ε2i,nε
2
j,n|Xn,Wn) then yields the upper bound

(∑n
i=1 v̂

2
i,n

n

)−2 ∑n
i=1 v̂

4
i,n (Mn)−1i,i

√
E(ε4i,n|Xn,Wn)

n2

2

= Op(1) op(1) = op(1);

this follows by the same argument as that just used for the first moment, only now using

the fact that the fourth moment is uniformly bounded.
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The third right-hand side term in (A.5) is mean zero because E(εi,n|Xn,Wn) = 0 by

construction. Its variance is

E

(∑n
i=1

∑n
j=1 v̂

2
i,n µi,n(An)i,j εj,n

n

)2
∣∣∣∣∣∣Xn,Wn

 =
n∑
j=1

σ2
j,n

(∑n
i=1 v̂

2
i,n µi,n(An)i,j

n

)2

.

To show that this vanishes first use

n∑
j=1

(An)i,j (An)k,j =
n∑
j=1

(Hn)i,j (Hn)j,k
(Mn)i,i (Mn)k,k

=
(Hn)i,k

(Mn)i,i (Mn)k,k
,

which follows from idempotency of Hn, to see that

n∑
j=1

(∑n
i=1 v̂

2
i,n µi,n(An)i,j

n

)2

=

∑n
i=1

∑n
k=1 v̂

2
i,n µi,n

(∑n
j=1(An)i,j (An)k,j

)
v̂2k,n µk,n

n2

is a quadratic form in the matrix Hn. Because Hn is a projection matrix we have that∑n
i=1

∑n
j=1 ai(Hn)i,jaj ≤

∑n
i=1 a

2
i for any (a1, . . . , an). Consequently, the variance satisfies

n∑
j=1

σ2
j,n

(∑n
i=1 v̂

2
i,n µi,n(An)i,j

n

)2

≤ (max
i
σ2
i,n)

n∑
j=1

(∑n
i=1 v̂

2
i,n µi,n(An)i,j

n

)2

≤ (max
i
σ2
i,n)

n∑
i=1

(
v̂2i,n µi,n (Mn)−1i,i

n

)2

≤
(maxi σ

2
i,n)

(mini(Mn)i,i)2

∑n
i=1 v̂

4
i,n µ

2
i,n

n2

≤
(maxi σ

2
i,n)

(mini(Mn)i,i)2

(
max
i

‖µi,n‖√
n

)2 ∑n
i=1 v̂

4
i,n

n
= op(1),

where the final transition uses the fact that v̂i,n = Q̃i,n + Ṽi,n together with the inequality∑n
i=1 v̂

4
i,n

n
≤ 4

∑n
i=1 Q̃

4
i,n

n
+ 4

∑n
i=1 Ṽ

4
i,n

n
= Op(1);

the last equality following from Assumption 4 and the fact that maxi E(Ṽ 4
i,n|Wn) = Op(1)

by Assumption 1 and Assumption 2, a detailed derivation of this last result is available in

the proof of Lemma SA-7 in the supplementary material to Cattaneo, Jansson and Newey

(2018).
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The fourth right-hand side term in (A.5), is zero mean for the same reason as the third.

Its variance is

E

(∑n
i=1

∑n
j=1 v̂

2
i,n εi,n(An)i,j ej,n

n

)2
∣∣∣∣∣∣Xn,Wn

 =

∑n
i=1 σ

2
i,nv̂

4
i,n

(∑n
j=1(An)i,j ej,n

)2
n2

and is bounded by

(maxi σ
2
i,n)

(mini(Mn)i,i)2

(
max
i

‖v̂i,n‖√
n

)2 (∑n
i=1 v̂

2
i,n

n

)
n

(∑n
i=1 e

2
i,n

n

)
= op(n%n) = op(1),

where we use (
∑n

j=1(An)i,j ej,n)2 ≤ (
∑n

j=1(An)2i,j) (
∑n

j=1 e
2
j,n) ≤ (Mn)−2i,i (

∑n
j=1 e

2
j,n) and

rely on n%n = O(1), as stated in Assumption 4 to reach the desired conclusion.

The fifth right-hand side term in (A.5), finally, is the bias term. The Cauchy-Schwarz

inequality gives(∑n
i=1

∑n
j=1 v̂

2
i,nµi,n (An)i,j ej,n

n

)2

≤
∑n

i=1 v̂
4
i,n (Mn)−2i,i
n

∑n
i=1 µ

2
i,n(
∑n

j=1(Hn)i,j ej,n)2

n
,

where ∑n
i=1 v̂

4
i,n (Mn)−2i,i
n

≤
(mini(Mn)−2i,i )

∑n
i=1 v̂

4
i,n

n
= Op(1),

and∑n
i=1 µ

2
i,n(
∑n

j=1(Hn)i,j ej,n)2

n
≤
(

max
i

‖µi,n‖√
n

)2 n∑
i=1

(
n∑
j=1

(Hn)i,j ej,n

)2

=

(
max
i

‖µi,n‖√
n

)2
(

n∑
j=1

n∑
k=1

ej,n

(
n∑
i=1

(Hn)i,j (Hn)i,k

)
ek,n

)

=

(
max
i

‖µi,n‖√
n

)2
(

n∑
j=1

n∑
k=1

ej,n(Hn)j,k ek,n

)

≤
(

max
i

‖µi,n‖√
n

)2
(

n∑
j=1

e2j,n

)
= op(n%n) = op(1),

by the same arguments as before.

Collecting results for the five right-hand side terms in (A.5) implies that (A.3) becomes∑n
i=1 v̂

2
i,n (yi,núi,n)

n
=

∑n
i=1 v̂

2
i,n σ

2
i,n

n
+ op(1),

which is what we wanted to show.
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A.2 Sufficient conditions for Assumption 4.

We continue to work with the case where r = 1. We provide primitive conditions for the

requirements

(i)

∑n
i=1 Q̃

4
i,n

n
= Op(1) and (ii) max

i

‖µi,n‖√
n

= op(1),

in turn.

Condition (i). As shown in the proof of Lemma SA-7 in the supplementary material to

Cattaneo, Jansson and Newey (2018), χn = o(1) implies that

max
i

‖Q̃i,n‖√
n

= op(1).

Consequently,∑n
i=1 Q̃

4
i,n

n
≤

(
max
i

‖Q̃i,n‖√
n

)2 n∑
i=1

Q̃2
i,n ≤

(
max
i

‖Q̃i,n‖√
n

)2

n

(∑n
i=1Q

2
i,n

n

)
= op(nχn),

where
n∑
i=1

Q̃2
i,n =

n∑
i=1

(
n∑
j=1

(Mn)i,jQj,n

)2

=
n∑
i=1

n∑
j=1

Qi,n(Mn)i,jQj,n ≤
n∑
i=1

Q2
i,n

was used. Hence, nχn = O(1) is sufficient for Condition (i) to hold.

Next, recall that

ni,n =
n∑
j=1

{(Mn)i,j 6= 0},

and let [i]n := {j : (Mn)i,j 6= 0}. If maxi ni,n = Op(1) and
∑n

i=1Q
4
i,n = Op(n), then we

obtain∑n
i=1 Q̃

4
i,n

n
=

∑n
i=1

(∑n
j=1(Mn)i,jQj,n

)4
n

≤

∑n
i=1

(∑n
j=1(Mn)

4/3
i,j

)3 (∑
j∈[i]n Q

4
j,n

)
n

≤

∑n
i=1 n

3
i,n

(∑
j∈[i]n Q

4
j,n

)
n

≤ (max
i
ni,n)3

∑n
i=1

∑
j∈[i]n Q

4
j,n

n

≤ (max
i
ni,n)4

∑n
j=1Q

4
j,n

n
= Op(1)

by an application of Hölder’s inequality.
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Condition (ii). We first note that

max
i
‖µi,n‖ ≤ max

i
‖xi,n‖ ‖β‖+ max

i
‖w′i,nγn + ei,n‖,

and that the first term on the right-hand side is easily handled. For any ε > 0 and θ > 0,

we have

Pr

(
max
i

‖xi,n‖√
n

> ε

)
≤

n∑
i=1

Pr
(
‖xi,n‖ > ε

√
n
)
≤
(
n−θ/2

ε2+θ

)∑n
i=1 E

(
‖xi,n‖2+θ

)
n

.

Consequently, maxi‖xi,n‖/
√
n = op(1) follows from

∑n
i=1 E(‖xi,n‖2+θ) = O(n), which is a

conventional requirement.

The same argument can be used for the second term in cases where w′i,nγn is a series

approximation to a well-behaved function ϕ(zi,n). In that case, w′i,nγn+ei,n = ϕ(zi,n), and

the requirement that
∑n

i=1 E(‖ϕ(zi,n)‖2+θ) = O(n) again does not appear overly strong to

impose.

We can also tackle the problem by first noting that

max
i
‖w′i,nγn + ei,n‖ ≤ max

i
‖w′i,nγn‖+ max

i
‖ei,n‖ ≤ max

i
‖w′i,nγn‖+ op(

√
n),

using the fact that

Pr

(
max
i

‖ei,n‖√
n
≥ ε

)
≤ 1

ε2

∑n
i=1 E(‖ei,n‖2)

n
= O(%n) = o(1)

by Assumption 3, and then imposing a growth rate on the number of parameters that

affect each observation, together with a moment condition on wi,n. Moreover, writing

wi,n = (wi,n,1, . . . , wi,n,qn)′ and γn = (γn,1, . . . , γn,qn)′,

w′i,nγn =

qn∑
j=1

wi,n,j γn,j =
∑
j∈(i)n

wi,n,j γn,j,

where the index set (i)n has cardinality κi,n := |(i)n|. In grouped data with κ-way fixed

effects, for example, κi,n = κ for all i, but we will also cover the case where κi,n grows with

n. By Hölder’s inequality,

E(‖w′i,nγn‖2+θ) ≤

∑
j∈(i)n

E(‖wi,n,j‖2+θ)

 ∑
j∈(i)n

γ
(2+θ)/(1+θ)
n,j

1+θ

.
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Consequently, if
∑

j∈(i)n E(‖wi,n,j‖2+θ) = O(κi) for all i and γn,i = O(1) for all i we obtain

that

Pr

(
max
i

‖w′i,nγn‖√
n

)
≤
(
n−θ/2

ε2+θ

)∑n
i=1 E

(
‖w′i,nγn‖2+θ

)
n

= O

(
(maxi κi,n)2+θ

nθ/2

)
,

which vanishes provided that maxi κi,n = O(n
1
2

θ
2+θ ). The same rate requirement can equally

be obtained under the alternative condition that∑n
i=1

∑
j∈(i)n γ

2+θ
n,j

n
= O(1),

together with the assumption that maxi maxj E(‖wi,n,j‖2+θ) = O(1), by another application

of Hölder’s inequality.

B Additional simulation results

We next present simulation results for the other models considered in the supplementary

material to Cattaneo, Jansson and Newey (2018).

B.1 One-way panel model

The first model considered is the standard fixed-effect model for panel data. The design is

similar to the design used in the main text, although here there is no randomness in the

dummies and the groups do no overlap. For double-indexed data (y(g,m), x(g,m)), the model

is

y(g,m) = x(g,m) β + αg + ε(g,m), g = 1, . . . , G, m = 1 . . . ,M,

and αg is a group-specific intercept. The within-group (fixed-effect) estimator equals the

ordinary least-squares estimator of y(g,m) on x(g,m) and G dummy variables that capture

group membership of the individual observations. We draw x(g,m) ∼ i.i.d.N (0, 1) and

ε(g,m) ∼ i.i.d.N (0, 1), set β = 1 and αg = 0 for all groups g. The samples sizes considered

have G = b700/Mc for M ∈ {700, 10, 5, 4, 3, 2}, which yields a total sample size of 700
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(except when M = 3, in which case the sample size is 699). This is the same total sample

size as in our simulations in the main text.

Table A.1 reports the simulation results for this model. In the case M = 2 HCK

does not exist and the table reports results for the standard HC0 estimator applied to the

first-differenced model.

B.2 Partially-linear model

We next provide simulation results for a series estimator of the partially-linear model

yi = xi β + exp(−
√
‖zi‖) + εi, xi = exp(

√
‖zi‖) + Vi,

where, again xi ∼ i.i.d.N (0, 1) with β = 1, and we draw (εi, Vi) ∼ i.i.d.N (0, I2) and,

for zi := (zi,1, . . . , zi,6)
′, generate each zi,j ∼ i.i.d. Uniform[−1, 1]. We approximate the

function exp(−
√
‖zi‖) by a power-series expansion of order κn. Moreover, for a given κn,

let wi,n denote the vector that collects all (unique) terms of the form zk1i,1 × z
k2
i,2 × · · · × z

k6
i,6

with k1 + · · · + k6 = κn. This yields qn = (6 + κn)!/(6!× κn!) as the dimension of the

nuisance parameter. We then estimate β by the least-squares estimator of yi on xi and

wi,n, again maintaining a sample size of 700. Note that, here, the vector γn is non-zero,

but ‖γn‖ = O(1) because the approximation converges.

The simulation results for κn ∈ {1, 2, 3, 4, 5} are collected in Table A.2.

References

Cattaneo, M. D., M. Jansson, and W. K. Newey (2018). Inference in linear regression models with

many covariates and heteroskedasticity. Journal of the American Statistical Association 113,

1350–1361.

11



Table A.1: One-way panel model

G 1 70 140 175 233 350

M 700 10 5 4 3 2

qn/n .0014 .1000 .2000 .2500 .3333 .5000

Rejection frequency of 5%-level test

HC0 .0529 .0667 .0835 .0971 .1155 .1665

HC1 .0526 .0518 .0519 .0552 .0539 .0525

HC2 .0527 .0519 .0519 .0555 .0541 .0526

HC3 .0526 .0419 .0315 .0286 .0187 .0069

HCK .0527 .0527 .0533 .0560 .0555 .0526

HCA .0526 .0544 .0540 .0576 .0557 .0550

Average width of 95% confidence interval

HC0 .1478 .1478 .1478 .1477 .1479 .1479

HC1 .1480 .1559 .1654 .1708 .1813 .2095

HC2 .1479 .1558 .1653 .1706 .1811 .2092

HC3 .1480 .1642 .1848 .1970 .2218 .2958

HCK .1479 .1557 .1651 .1704 .1808 .2092

HCA .1478 .1556 .1651 .1704 .1809 .2089
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Table A.2: Partially-linear model

κn 1 2 3 4 5

qn 7 28 84 210 462

qn/n .01 .04 .12 .30 .66

Rejection frequency of 5%-level test

HC0 .0649 .0536 .0650 .0927 .1823

HC1 .0634 .0493 .0497 .0451 .0218

HC2 .0636 .0494 .0511 .0521 .0508

HC3 .0630 .0449 .0366 .0197 .0012

HCK .0636 .0493 .0512 .0523 .0605

HCA .0678 .0571 .0568 .0603 .0700

Width of 95% confidence interval

HC0 .1387 .1476 .1481 .1520 .1741

HC1 .1395 .1508 .1580 .1819 .2992

HC2 .1394 .1506 .1573 .1765 .2527

HC3 .1401 .1537 .1677 .2110 .4335

HCK .1394 .1506 .1572 .1763 .2496

HCA .1391 .1498 .1563 .1754 .2496
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